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ABSTRACT
There is good evidence for impairment of spermatogenesis and reductions in sperm counts and testosterone levels in chronic alcohol-

ics. The mechanisms for these effects have not yet been studied in detail. The consequences of chronic alcohol consumption on 

the structure and/or metabolism of testis cell macromolecules require to be intensively investigated. The present work reports the 

effects of chronic alcoholism on contents of free amino acids, levels of cytochrome P450 3A2 (CYP3A2) mRNA expression and DNA 

fragmentation, as well as on contents of different cholesterol fractions and protein thiol groups in rat testes. Wistar albino male rats 

were divided into two groups: I – control (intact animals), II – chronic alcoholism (15% ethanol self-administration during 150 days). 

Following 150 days of alcohol consumption, testicular free amino acid content was found to be significantly changed as compared 

with control. The most profound changes were registered for contents of lysine (–53%) and methionine (+133%). The intensity of 

DNA fragmentation in alcohol-treated rat testes was considerably increased, on the contrary CYP3A2 mRNA expression in testis cells 

was inhibited, testicular contents of total and etherified cholesterol increased by 25% and 45% respectively, and protein SH-groups 

decreased by 13%. Multidirectional changes of the activities of testicular dehydrogenases were detected. We thus obtained complex 

assessment of chronic alcoholism effects in male gonads, affecting especially amino acid, protein, ATP and NADPH metabolism. Our 

results demonstrated profound changes in testes on the level of proteome and genome. We suggest that the revealed metabolic 

disorders can have negative implication on cellular regulation of spermatogenesis under long-term ethanol exposure. 
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smoking and alcohol consumption usually come top 

of the list (Sharpe, 2010). Most studies that included 

alcohol as a point of investigation have failed to show 

a significant impact on sperm counts, at least among 

those with moderate alcohol consumption (Marinelli et 

al., 2004; Martini et al., 2004). In contrast, in chronic 

alcoholics, there is good evidence for impairment of 

spermatogenesis and reductions in sperm counts and 

testosterone levels (Villalta et al., 1997; Muthusami & 

Chinnaswamy, 2005). The mechanisms for these effects 

have not yet been studied in detail (Sharpe, 2010).

Ethanol can cause disturbance in the main metabolic 

pathways (Zakhari, 2006). Alcohol abuse has a negative 

effect on all three factors that influence the male repro-

ductive function: hypothalamus-hypophysis-gonad 

system, endocrine glands, and hormones (Emanuele & 

Emanuele, 2001). Despite a number of data addressed 

to the effects of ethanol on the balance of reproductive 

hormones, changes in the metabolism of proteins, nucleic 

acids, lipids and carbohydrates in male gonads have not 

yet been investigated properly. Thus, the effects of chronic 

alcohol consumption on the structure and/or metabolism 

of testis cell macromolecules call for intensive studies. In 

Introduction

The present environmental/lifestyle impact on sper-

matogenesis is an important health issue (Sharpe, 2010). 

Spermatogenesis is a highly synchronized, regular, 

continuous and extremely complex process of cellular 

differentiation, by which a spermatogonial ‘stem cell’ is 

gradually transformed into a highly specialized haploid 

spermatozoon (Cheng & Mruc, 2010). The process of 

spermatogenesis is not initiated until puberty and is then 

maintained throughout the rest of life in normal men. It 

is thus only during this period that the spermatogenic 

process itself is directly vulnerable to adverse effects 

resulting from the lifestyle of man and/or his exposure 

to toxic agents from the general environment, or as a 

result of his occupation. Of the Western lifestyle factors 

commonly suspected to have adverse effects on health, 
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our previous study we showed that 150 days of 15% ethanol 

self-administration in male rats led to a considerable rise 

of cytochrome P450 2E1 (CYP2E1) mRNA and protein 

in testes. Such changes were accompanied by profound 

spermatogenesis disorders (cauda epididymal sperm 

quantitative and qualitative parameters deterioration, 

destructive changes in the spermatogenic epithelium, 

and decrease of spermatogenic index) (Shayakhmetova et 

al., 2013). Testis CYP2Е1 is localized in the Leydig cells, 

where testosterone biosynthesis takes place (Jiang et al., 

1998; Forkert et al., 2002). In our opinion, the activation 

of CYP2Е1-dependent ethanol-metabolizing systems in 

steroidogenic cells could determine at least part of the 

negative effects of alcohol on testes. On the other hand, we 

suppose that harmful consequences for male reproductive 

organs mediated by chronic alcohol consumption could 

be partially a result of degenerative processes caused by 

complex disturbances in the protein, lipid, and nucleic acid 

metabolisms. It is particularly the contribution of chronic 

alcohol intake to changes in the metabolism of testicular 

amino acids that is not known, especially its influence on 

any particular amino acid content and function. Similarly 

does the role of alcohol-mediated individual amino acid 

changes and their combined effects on testicular proteins 

and the structure and/or metabolism of nucleic acids 

remain unclear.

Based on these facts and considering that alcoholism is 

a chronic disease highly prevalent in the world population, 

the present work reports the effects of chronic ethanol 

consumption on free amino acids, levels of cytochrome 

P450 3A2 (CYP3A2) mRNA expression and DNA frag-

mentation, as well as on contents of different cholesterol 

fractions and proteins thiol groups in rat testes.

Material and methods

Wistar albino male rats, initial body weight of 150–170 g, 

were used in the study. They were kept under controlled 

temperature (from 22 °C to 24 °C), relative humidity of 40% 

to 70%, lighting (12 h light-dark cycle), and on a standard 

pellet feed diet (“Phoenix” Ltd., Ukraine). The study was 

performed in accordance with the recommendations of 

the European Convention for the Protection of Vertebrate 

Animals Used for Experimental and other Scientific 

Purposes and approved by the Institutional Animal 

Care and Use Committee. For the experimental (chronic 

alcoholism) model, reproducing male rats were selected 

according to the method for measuring voluntary alcohol 

self-administration in rats, which provides a continuous 

choice between an alcohol solution and water (two-bottle 

preference test) (Richter & Campbell, 1940). 

Six selected rats were used for chronic alcoholism 

modeling by replacing water with a 15% ethanol solution 

during 150 days. The consumption of 15% ethanol was 

measured as ml and was calculated as g/kg/day of pure 

ethanol. On this regimen, the daily ethanol consumption 

was on average 10 g/kg/day. Six intact male rats (of the 

same age and weight) were used as controls. From the 

beginning of the experiment, they were kept in the same 

conditions as the experimental animals, but were given 

only water ad libitum.

After 150 days, both the experimental and control rats 

were sacrificed under a mild diethyl ether anesthesia by 

decapitation. The right testis was used for histochemical 

analysis and the left testis for other investigations.

For enzyme histochemistry, unfixed, 5-μm thick 

cryostat sections were cut at –18 °C. Succinic dehydro-

genase (SDH) activity in the testes was demonstrated by 

the method of Nachlas et al. (Nachlas et al., 1957), using 

nitro blue tetrazolium (Nitro BT) as an electron accep-

tor. Sections were incubated in the substrate medium 

containing tetrazolium for 15 min at 37 °C. Appropriate 

testis sections incubated without substrates were used as 

controls. Blue diformazan granule deposits were taken as 

indicative of enzyme activity.

The activity of lactic dehydrogenase (LDH) was histo-

chemically detected according to the technique of Hess 

et al. (Hess et al., 1958) as described by Pearse (Pearse, 

1968). The sections were incubated in the substrate 

solution containing Nitro BT and nicotinamide adenine 

dinucleotide for 15 min at 37 °C. Appropriate testis sec-

tions incubated without substrates were used as controls. 

Violet diformazan deposits were taken as manifestations 

of LDH activity.

To testis homogenate samples (1 ml) equal volumes 

of 3% sulfa-salicylic acid were added and the obtained 

mixtures were left for 10 minutes in the refrigerator at 

4 °C. The formed sediments were removed by centrifuga-

tion (5,000 g, 10 min, 4 °C) (Kuchmerovska et al., 2008). 

Supernatants contained free amino acids from testes. 

Contents of free amino acids were determined on the 

amino acid analyzer ААА-881 (Czech Republic). 

The total cholesterol content in testis homogenates 

was investigated according to a standard spectrophoto-

metric method (Kates, 1972).

The contents of protein SH-groups in testis homog-

enates were determined with Ellman’s reagent (Sedlak & 

Lindsay, 1968). 

The total protein contents in testis homogenates were 

assessed by the method of Lowry et al. (Lowry et al., 1951).

The DNA from the testes was isolated by a modi-

fied method from Current Protocols in Toxicology 

(Zhivotosky & Orrenius, 2001). The tissue was homog-

enized and digested in digestion buffer (100 mM NaCl; 

10 mM Tris-HCl; 25 mM EDTA, pH 8; 0.5% SDS and 

freshly added 0.1 mg/ml proteinase K) (Sigma-Aldrich, 

Inc., USA)) (1:1.2 mg/ml) with shaking at 50 °C for 

15 h. RNA was degraded by incubation of the samples 

with 1–100 mg/ml thermostable RNAse H for 1.5 h 

at 37 °C. DNA was extracted with an equal volume 

of phenol:chloroform:isoamyl alcohol (25:24:1) and 

centrifuged for 10 min at 1,700 g. Then the DNA was 

precipitated by adding 0.5 vol 7.5 M ammonium acetate 

and 2 vol 100% ethanol to the aqueous layer; samples were 

separated by centrifugation at 1,700 g for 5 min, rinsed 

with 70% ethanol, and air-dried. Pellets were dissolved 

in TВE buffer (10 mM Tris-HCl and 1 mM EDTA, pH 8) 
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and then fractionated through 2% agarose gels (50–60 V; 

3.5 h). After electrophoresis, the gels were stained with 

ethidium bromide and visualized under a UV transil-

luminator (BIORAD, USA). Analysis of electrophoresis 

data was carried out with Quantity One Software (USA). 

The expression CYP3A2 (ortholog of human CYP3A4 

(Jäger et al., 1999)) mRNA in testes was determined by 

a reversed transcriptase polymerase chain reaction 

(RT-PCR). Testis samples (50 mg) were collected, quickly 

frozen in liquid nitrogen, and stored at –80 °C before 

RNA extraction. The isolation of total mRNA was carried 

out with a TRI-Reagent (Sigma, USA). The integrity and 

concentration of RNA was analyzed in a 2% agarose gel. 

First-strand complementary DNA (cDNA) was synthe-

sized using a First-Strand cDNA Synthesis Kit (Fermentas, 

Germany). The reaction mixture contents for PCR, ampli-

fication protocol, and specific primers for the CYP2E1 gene 

were chosen according to Jäger et al. (1999). The primer 

sequences: sense, 5’-TACTACAAGGGCTTAGGGAG-3’ 

and anti-sense, 5’-CTTGCCTGTCTCCGCCTCTT-3’. 

RT-PCR with primers of house-keeping gene β-actin 

sense, 5’-GCTCGTCGTCGACAACGGCTC-3’ and anti-

sense 5’-CAAACATGATCTGGGTCATCTTCT-3’) were 

carried out for internal control. All of the primers were 

synthesized by “Metabion” (Germany). The MyCycler 

thermocycler (BioRaD, USA) was used for amplification. 

PCR products (СYP3A2 – 349 bp and β-actin – 353 bp) 

were separated in a 2% agarose gel, stained with ethidium 

bromide, and visualized under a UV transilluminator 

(BIORAD, USA). Data analysis was carried out with 

Quantity One Software (USA) and presented in relative 

units as the ratio of СYP3A2 mRNA and β-actin mRNA 

contents.

The obtained data were calculated and expressed as 

the mean ± standard error of the mean (mean±S.E.M.). 

Data were compared using Student’s t-test. Differences 

were considered to be statistically significant at p<0.05.

Results 

Investigation of chronic alcoholism effects on rat testis 

pools of free amino acids (Table 1) showed that statistically 

significant changes, as compared with control, were reg-

istered for 5 amino acids and for the total sum. Contents 

of lysine, arginine, serine, glycine were decreased while 

contents of methionine were increased. The contents of 

lysine (–53%) and methionine (+133%) exhibited the most 

profound changes.

Investigation of rat testes DNA fragmentation dem-

onstrated its essential intensification following 150 days 

of ethanol administration in comparison with control 

(Figure 1). In the control group, 6 fractions of DNA frag-

ments with weights 1300, 1100, 300, 250, 100 and 60 b.p. 

were present. Main fractions of high-weighted DNA frag-

ments had weights of 1300 b.p. and of low-weighted DNA 

fragments 60 b.p. 

In testes of alcohol-treated rats 8 fractions of DNA frag-

ments with weights over 1000 (4 different fractions), 700, 

Table 1. Rat testes contents of free amino acids (mg/ 100 g of moist 
tissue) after 150 days of 15 % ethanol consumption.

Amino acid

Animal groups

Control Experimental

Lysine 2.60±0.30 1.20±0.10*

Histidine 0.40±0.10 0.36±0.12

Arginine 1.30±0.20 0.63±0.07*

Ornithine 0.60±0.20 0.52±0.10

Aspartic acid 9.70±3.10 8.80±2.50

Threonine 2.20±0.10 2.40±0.10

Serine 2.60±0.10 1.80±0.09*

Glutamic acid 34.60±3.50 33.20±4.10

Proline 3.00±0.80 3.90±0.40

Glycine 11.80±2.30 6.40±0.70*

Alanine 8.00±1.30 9.10±1.00

Cysteine 0.70±0.20 0.50±0.10

Valine 0.80±0.20 0.36±0.08

Methionine 0.30±0.10 0.70±0.10*

Isoleucine 0.60±0.20 0.34±0.05

Leucine 0.70±0.20 0.44±0.09

Tyrosine 1.10±0.,30 0.62±0.04

Phenylalanine 1.40±0.40 1.98±0.06

Glutamine 16.10±3.50 12.70±2.80

Total sum 108.10±4.70 85.95±2.80*

mean±S.E.M., n=6; *p<0.05 statistically significant in comparison with control

500 b.p.

250 b.p.

Marker Control Alcoholism

1 2

Figure 1. Levels of 
DNA fragmentation in 
rat testes. Analysis was 
carried out using the 
Quantity One Software
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550, 30 and 20 b.p. were present. Main of high-weighted 

DNA fragments were fractions with weights over 1000 

b.p., while among low-weighted DNA fragments fractions 

were approximately equal (by peak intensity). 

A considerable inhibition of CYP3A2 mRNA expres-

sion was indicated in testes of rats with chronic alcohol-

ism (Figure 2). This parameter decreased 3.5 times as 

compared with control.

At the same time in testes of alcohol-addicted animals 

the contents of total cholesterol increased by 25%, etheri-

fied cholesterol increased by 45%, and protein SH-groups 

decreased by 13% in comparison with control (Table 2).

Evaluation of SDH histo-topography showed a sig-

nificant decrease of its enzymatic activity in alcoholic rat 

testes as compared with control (Figure 3). Deposits of 

blue diformazan granules were focally lower, mainly small 

granules of diformazan were seen, and cellular cytoplasm 

was stained pink. Additionally, single polymorphic 

granules of diformazan were fixed in some seminiferous 

tubules. 

On the contrary, the activity of LDH increased in all 

layers of spermatogenic epithelium of alcohol-treated rat 

testes (Figure 4). 

Discussion

It is particularly the character of amino acid changes 

provoked by excessive ethanol consumption that points 

to considerable general disturbances in the metabolism of 

proteins (Murakami et al., 2013). Our results are in good 

accordance with other authors’ data (Reilly et al., 1997) 

who demonstrated the ability of ethanol to impair protein 

synthesis.

We detected changes of testis free amino acid contents 

that can also be taken as evidence of disturbances in 

metabolism of adenosine triphosphate (ATP) and reduced 

form of nicotinamide adenine dinucleotide phosphate 

(NADPH), both at the stage of glycolysis (changes of 
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Figure 2. CYP3A2 
mRNA in rat testes:
a – electrophore-
gram of СYP3A2 
and reference-gene 
β-actin RT-PCR prod-
ucts (arrows indicate 
appropriate DNA 
fragments); b – aver-
age rate of CYP3A2 
mRNA expression in 
rat testes. * p<0.05 
statistically signifi -
cant in comparison 
with control.

Table 2. Rat testes contents of total cholesterol and SH-group pro-
teins after 150 days of 15 % ethanol consumption.

Indices

Animals groups

Control Alcoholism

Total cholesterol,
μmoles/mg of protein 3.98±0.63 4.98±0.39*

Free cholesterol,
μmoles/mg of protein 1.34±0.07 1.51±0.17

Etherified cholesterol,
μmoles/mg of protein 2.64±0.68 3.84±0.36*

Protein SH-groups, 
nmoles/mg of protein 133.06±1,83 115.41±3,92**

mean±S.E.M., n=6; *p<0.05 statistically significant in comparison with con-
trol; **p<0.01 statistically significant in comparison with control

Figure 3. SDH activity in rat testes: а – control; b – nidal decrease 
of enzymatic activity following 150 days of 15% ethanol consump-
tion; method of Nachlas et al. (1957), 200×. 

Figure 4. LDH activity in rat testes: а – control; b – increase of 
enzymatic activity following 150 days of 15% ethanol consump-
tion; method of Hess et al. (1958), 200×.
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glycine and serine) and in the citric acid cycle (changes 

of methionine) (Reilly et al., 1997). Our SDH activity data 

also indicate possible changes in the citric acid cycle. 

Our assumption on the possibility of ATP and NADPH 

metabolism violations in testes of alcohol-addicted rats 

are in good correspondence with our results on testicular 

LDH activity changes.

Serine and arginine can act as an NO depot, which is 

not only responsible for blood vessel relaxation but also 

reacts with the iron atoms (in heme and free state), with 

superoxide anions, oxygen molecules, hydroperoxide, 

organic peroxides and peroxide radicals (Stepuro, 2001). 

Thus, changes of serine and arginine contents in our 

experiments could adversely affect at the level of NO, 

peroxidation rates and functioning of the vascular system 

both in testes and the whole organism (Zhang et al., 2005). 

Arginine could act as an antioxidant and powerful immu-

nomodulator (Pavlov, 1998), as a precursor in biosynthesis 

of polyamines, which regulate cell proliferation processes 

in the organism. 

Changes of methionine in testicular pools deserve 

special attention. This amino acid can act as antioxidant 

and immunomodulator (Pavlov, 1998; Hipkiss, 2012). 

Methionine is a precursor of taurine – antioxidant and 

membrane stabilizer. It can influence the composition of 

tissue lipidome and membrane lipids (Jové et al., 2013). 

Alterations in the methionine cycle are closely connected 

with cholesterol metabolism violations (also detected in 

our experiments) and disturbances preceding molecular 

signs of inflammation (Thomas, et al., 2013). This amino 

acid is also a precursor of polyamines – stimulators and 

regulators of proliferation processes (Pavlov, 1998; Jung et 

al., 2013). The up-regulation of methionine content in our 

experiment may be regarded as a defensive mechanism 

(Jung et al., 2013). 

It is reasonable to propose that biosynthesis of 

S-adenosylhomocysteine and homocysteine could be also 

broken due to excessive alcohol intake. Changes in contents 

of methionine, glycine and serine – amino acids involved in 

the synthesis of these compounds (Jung et al., 2013; Marks, 

1994), point to such a possibility. This supposition is in good 

accordance with other authorś  data demonstrating that 

alcohol-induced organ injury is associated with a decreased 

S-adenosyl-l-methionine/S-adenosyl-l-homocysteine 

ratio and depletion of mitochondrial glutathione, which 

has been shown to sensitize cells to tumor necrosis fac-

tor (TNF) (Fernández et al., 2009). Accumulation of 

hydroperoxides and disturbances of DNA reparation 

processes could be a result of changes in homocysteine 

metabolism (Jung et al., 2013; Kovalenko et al., 2007). 

Changes of such amino acids as glycine in the testis 

pool are of special importance because of the involvement 

(along with other amino acids) in glutathione biosynthesis 

(Marks, 1994; Dimitrova et al., 2002). On the other hand, 

as glutathione realizes trans-membrane transport of 

amino acids (Marks, 1994; Roth et al., 2002; Rennie et 

al., 1998), changes in its contents can cause changes in 

free amino acid contents (Marks, 1994; Roth et al., 2002; 

Rennie et al., 1998).

In the group with chronic alcoholism, we established 

statistically significant changes in testicular contents 

of amino acids involved in the biosynthesis of purines 

and pyrimidines (glycine and serine) (Marks, 1994). 

Such changes could influence processes of nucleotides, 

the metabolism of nucleic acids, and the state of cell 

chromosomes. 

DNA is an important molecular target for toxicants 

(Kovalenko et al., 2007) inducing endonucleases for its 

lethal splitting. Such compounds could inhibit processes 

of DNA repair by nuclear DNA-polymerases. The level and 

character of DNA fragmentation are markers of apoptotic 

processes in the organism (Wang et al., 2005). Our results 

on DNA fragmentation rates in testes of ethanol-treated 

rats are in good correspondence with other authorś  data 

(Miñana et al., 2002). It should be noted that in adulthood, 

apoptosis plays a significant role in regulat ing germ cell 

development. For example, apoptosis is used as a mecha-

nism for removing damaged germ cells from seminiferous 

tubules so that they do not continue to differentiate into 

spermato zoa. Selective deletion of damaged germ cells 

is clearly a critical component of the mechanisms used 

to safeguard the genome of a given species. The range of 

stimuli that will trigger this activity is impressively broad, 

including various forms of electromagnetic radia tion, 

environmental toxicants, heavy metals and chemothera-

peutic agents (Aitken & Baker, 2013). 

Ethanol induces apoptosis via 2 different pathways: 

mitochondrial permeability transition and up-regulation 

of the expression of CD95-Fas ligand. The overproduction 

of reactive oxygen species (ROS) by mitochondria, driven 

by acetaldehyde metabolism, is a common trigger of both 

mechanisms (Miñana et al., 2002). In the organism of 

alcoholics, apoptosis is caused by increased ROS due to 

increased availability of the reduced form of nicotinamide 

adenine dinucleotide (NADH) owing to mitochondrial 

acetaldehyde metabolism, and it is prevented by blocking 

the opening of mitochondrial permeability transition 

pores with cyclosporine A (Miñana et al., 2002).

An ability of ethanol to disturb spermatogenesis was 

recorded in numbers of studies (Villalta et al., 1997; 

Muthusami & Chinnaswamy, 2005; Emanuele & 

Emanuele, 2001; Martinez et al., 2000; El-Sokkary, 2001). 

On the other hand, when spermatogenesis is disrupted in 

any way, the germ cells tend to default to an apoptotic state 

(Aitken & Baker, 2013). Apoptosis during spermatogen-

esis has also been suggested to play a role in the etiology 

of spontaneous male infertility in light of the excessively 

high numbers of apoptotic germ cells observed in testes of 

some infertile males (Aitken & Baker, 2013).

The testis contains two distinct sets of cytochrome 

P450 enzymes. One set consists of steroidogenic P450 

enzymes (e.g., CYP11A1 and CYP17A1), which are 

involved in testosterone biosynthesis (Shan et al., 1993). 

The other set comprises those P450 enzymes which play 

a major role in the biotransformation of hydrophobic 

xenobiotic compounds to more water-soluble metabolites 

(Shayakhmetova & Bondarenko, 2013). The physiological 

role of xenobiotic-metabolizing P450 enzymes in the 
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testis is not definitively known, but it has been proposed 

that they could catalyze the oxidative biotransformation 

of lipophilic xenobiotic or endogenous compounds within 

the testis, which could present important implications for 

testicular toxicity (Shayakhmetova & Bondarenko, 2013; 

Schuppe et al., 2000). In our previous study, we showed 

CYP2E1 mRNA expression and protein content elevation 

in alcohol-treated rat testes with simultaneous sper-

matogenesis violations (Shayakhmetova et al., 2013). In 

the present investigations, we studied the effects of long-

term ethanol consumption on CYP3A2 expression in rat 

testes. CYP3A2 is the rat ortholog of the human enzyme 

CYP3A4 (Jäger et al., 1999). Our results indicated that 

chronic alcohol exposure significantly down-regulated 

the testicular CYP3A2 mRNA level.

Ethanol has been reported to be either an inducer or an 

inhibitor of CYP3A expression. CYP3A exposure induced 

P450 3A in primary cultures of human and rat hepato-

cytes (Kostrubsky et al., 1995; DiPetrillo et al., 2002). In 

the CYP3A4-expressing HepG2 cell line, incubation with 

ethanol increased CYP3A4 mRNA level and CYP3A activ-

ity in a dose-dependent manner (Feierman et al., 2003). 

Several in vivo studies indicated a relationship between 

CYP3A and the duration of ethanol exposure. In rats fed 

ethanol with the Lieber-DeCarli diet for 7–14 days, both 

ERND catalytic activities and immunoreactive CYP3A 

were increased (Roberts et al., 1995). In addition, ethanol 

significantly increased fentanyl N-dealkylatase activities 

in rats fed ethanol for 21 days (Feierman et al., 2003). 

However, in rats fed ethanol diet for 38 days, there was a 

significant decrease in hepatic testosterone 6-hydroxylase 

activities (Badger et al., 1993). Similarly, Rowlands et al. 

found that CYP3A apoprotein level and testosterone 

6-hydroxylase activities decreased in rats fed ethanol diet 

for 42–55 days (Rowlands et al., 2000).

It is known that hepatic CYP3A expression is highly 

regulated by pregnane X receptor (PXR), a member 

of the nuclear receptor superfamily, regulating gene 

transcription in a ligand-dependent manner (Kliewer et 

al., 1998; Lehmann et al., 1998). However, the results of 

a previous report (Zhang et al., 1999) showed that PXR 

was not expressed, while CYP3A2 was demonstrated to be 

expressed in rat testes (Kim et al., 2003). In our opinion, 

the down-regulation of CYP3A2 mRNA in the testes by 

ethanol could indicate its ability to affect CYP3A2 at the 

transcription level independently of PXR.

Findings in rodent models have shown that di-2-ethyl-

hexyl phthalate is able to induce CYP3A in testes and liver, 

resulting in intensification of testosterone metabolism 

(16alpha- and 6beta-hydroxylation increase) (Kim et al., 

2003). The results of the present study suggest that inhi-

bition of testicular CYP3A2 mRNA expression could, at 

least partially, mediate the ability of ethanol to disturb tes-

tosterone metabolism and act as an endocrine disruptor.

Our results on cholesterol content changes are in good 

accordance with other authors’ data demonstrating that 

chronic ethanol exposure causes significant increase in 

levels of testicular cholesterol, free fatty acid, phospho-

lipids and triglycerides (Radhakrishnakartha et al., 2013). 

Yet in our experiments we showed for the first time differ-

ent degrees of changes in different cholesterol fractions.

The Leydig cells of the testis have the capacity to 

biosynthesize testosterone from cholesterol. Testosterone 

and its metabolically activated product dihydrotes-

tosterone are critical for the development of the male 

reproductive system and spermatogenesis (Ye et al., 2011). 

Antiandrogenic chemicals could suppress androgen 

production in Leydig cells, reduce their number, or bind 

to the androgen receptors so as to block activation by 

androgens (Ye et al., 2011). We found, along with other 

authors (Radhakrishnakartha et al., 2013), that the high 

testicular level of cholesterol at the background of the well 

known ethanol-mediated testosterone synthesis suppres-

sion (Orpana et al., 1990; Adams et al., 1991; Frias et al., 

2000) may manifest due to direct ethanol interaction with 

the testosterone biosynthetic pathway and/or metabolic 

activation pathway. 

Our results on the decrease of protein SH-groups 

in testes of alcohol-treated rats are in good accordance 

with data of clinical studies on the decrease of total thiol 

in alcohol abusers (Prakash et al., 2008). The alcohol 

induced formation of free radicals and the oxidative 

damage in alcoholism have been documented by several 

authors by measuring various oxidants and antioxidants 

in the organism (Albano, 2006; Lieber, 1997). Protein 

thiols represent a prominent biological target for ROS, 

and their levels can be used as markers of oxidative 

modification of proteins (Mimić-Oka et al., 2001). It has 

been estimated that proteins can scavenge the majority 

(50%–75%) of generated reactive species (Davies et al., 

1991) and much of this function is attributed to the thiol 

groups present on them. One or more reduced thiol (-SH) 

groups are essential for the function of many proteins 

(Topçuoglu et al., 2009). Consequences of the damage of 

protein SH-groups may be impaired enzymatic activity 

and modified membrane and cellular function, depending 

on the nature of the vulnerable protein component and 

the attacking radical species.

Our results suggest that the self-administration of 15% 

alcohol in rats during 150 days led to multidirectional 

changes of the activity of testicular dehydrogenases, 

which play a crucial role in supplying energy needed for 

various metabolic functions in germ cells (Mathur, 2012). 

Dehydrogenases form enzyme groups of mitochondrial 

and cytoplasmic origin, which facilitate many oxidore-

duction reactions responsible for generating ATP. LDH 

and SDH are important oxidoreductases linked to the 

events of spermatogenesis and androgenesis (Mathur, 

2012). LDH activity is mainly of tubular localization, 

but SDH showed also interstitial activity (Blackshaw & 

Massey, 1978).

Forming part of complex II of the respiratory chain, 

SDH, is situated at the intersection of the citric acid 

cycle and oxidative phosphorylation. This combination 

of functions places SDH at the center of two essential 

energy-producing metabolic processes of the cell (Cervera 

et al., 2009). SDH enzymatic activity is associated with 

maturation of germ cells (Hodgen & Sherins, 1973). The 
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decrease of SDH activity in testes of experimental animals 

could be evidence of metabolic alterations in spermato-

genic epithelium and reduction of the energetic resources 

of germ cells following prolonged ethanol administration. 

It is well known that spermatogonia may utilize glu-

cose as the major energy substrate, but spermatocytes and 

spermatids suffer a rapid decline in their ATP content in 

glucose-supplemented media and require lactate/pyruvate 

for the maintenance of their ATP concentrations (Jutte et 

al., 1981). 

Glucose transport into the cell and the lactate LDH 

isoenzyme system, which reversibly catalyzes the inter-

conversion of pyruvate and lactate, are biochemical steps 

which participate in the regulation of lactate production 

(Riera et al., 2002). Facilitated Sertoli cell glucose trans-

port across the plasma membrane is mediated by the 

carrier protein termed glucose transporter 1, the only 

glucose transporter so far demonstrated in this cell. As 

for the LDH isoenzyme system, increments in lactate 

production in Sertoli cells have been correlated with an 

increase in the LDH5 isoenzyme containing four subunits 

A. Glucose transport through the plasma membrane and 

LDH A mRNA levels are regulated in a distinct manner 

by FSH, interleukin 1, TNF and epidermal growth factor – 

factors that modify the lactate production of Sertoli cells 

(Riera et al., 2002).

Chemically induced stress causes elevated LDH activ-

ity, which can be used as a good diagnostic tool in toxicol-

ogy (Ksheerasagar & Kaliwal, 2013). In our experiment 

the elevation of LDH activity in testes of alcohol-treated 

rats indicates enhancement in the extent of lactate and 

pyruvate mobilization into the citric acid cycle, and it 

could reflect the compensatory capability of gonads.

Conclusions

Thus investigation of chronic alcoholism effects on tes-

ticular levels of free amino acids, rates of CYP3A2 mRNA 

expression and DNA fragmentation processes, as well as 

changes in cholesterol and protein thiol group contents 

allowed us to obtain complex estimation of this pathologic 

influence in male gonads, especially on the metabolism 

of amino acids, proteins, ATP and NADPH. Our results 

demonstrated profound changes in testes on the level 

of proteome and genome. We suggest that the revealed 

testicular metabolic disorders could have negative impli-

cations on cellular regulation of spermatogenesis under 

long-term ethanol exposure.
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